
Composition via Quantum Cellular Automata

Hector Miller-Bakewell, Eduardo Miranda

2021-11-19

Goal

To facilitate musicians using quantum computers to aid
composition.

Building on existing classical techniques.

What’s to come

What’s in this presentation
I Cellular Automata
I CAMUS The Cellular Automaton MUSic generation system

(Miranda)
I (Partitioned) Quantum Cellular Automata
I Combining the two approaches

Classical Cellular Automata

Cellular Automata

Discretised Spacetime
Cells form a grid
Time advances in steps

Bounded Information Propagation
Each cell’s next state is dependent only on nearby cells’ current
states

Finite states
For example, a bit

Example Cellular Automata

Figure 1: John Conway’s Game Of Life

Space is a 2D grid of cells, each is either On or Off

A cell’s next state is determined by its own state and its current
level of crowding

Why Cellular Automata?

Cellular Automata originated in the 1960s (von Neumann and Ulam)
as tools to examine self-replicating behaviour.

Since then they have been image processing (Preston and Duff,
1984), ecology (Hogeweg, 1988), sociology (Epstein and Axtell,
1996), etc..

They exhibit complex emergent behaviour from simple rules.

History of Cellular Automata in music

Iannis Xenakis, mid 1980s, used cellular automata “to create
complex temporal evolution of orchestral clusters”

Other examples include Beyls (1989), Millen (1990), and Miranda
(1990)

CAMUS

From CA to music

Input: The state of (two) 2D cellular automata, at a single moment
in time

Output: A sequence of triads, of varying pitch composition,
instrumentation, and timing

Choosing the intervals of a triad

The root of the triad is determined in advance1

for cell in first_automaton:
if cell is True:

first_interval <- cell.x
second_interval <- cell.y

1In the original CAMUS this was the case - we’ll change this later

Choosing the intervals of a triad

Figure 2: From cells to triads

Temporal Morphology

The timings of the voices is determined by the neighbours of the cell
in the triad grid.

Figure 3: How the neighbours affect timings

Choosing the instruments of a triad

The instrument of a triad is determined by looking up the same x,
y coordinate in a second cellular automaton.

for cell in first_automaton:
if cell is True:

first_interval <- cell.x
second_interval <- cell.y
... determine timings ...
instrument <- lookup(cell.x, cell.y)

Choosing the instruments of a triad

Figure 4: Using two automata to determine triad and instrument

Three Instruments

Rather than a single instrument for the triad, we assign each voice
an instrument, using the neighbours of the cell in the instrument
grid.

Figure 5: Labelling the neighbours

Quantum Cellular Automata

Quantum Cellular Automata2

Discretised Spacetime
Cells form a grid
Time advances in steps

Bounded Information Propagation
Each cell’s next state is dependent only on nearby cells’ current
states

Quantum states
For example, a qubit

2A review of Quantum Cellular Automata (Farrelly, Quantum 2020)

Constructivity

These desiderata are not constructive

Simultaneity

An important part of classical cellular automata is that the update
step is performed both in parallel, and simultaneously to all cells.

This is a problem when we can’t copy information.

(P)QCA

The work of Arrighi and Grattage (Natural Computing, 2012)
showed that the various different definitions of Quantum Cellular
Automata in the literature could all be simulated by Partitioned
Quantum Cellular Automata (PQCA).

PQCA, defined next slide, are constructive and universal.

PQCA

A partition divides the cells at a given time into tessellating
supercells.

Figure 6: Horizontal Supercells

A unitary is then applied to each supercell.

PQCA

The full update step is built from several such partitions and
unitaries.

Figure 7: Vertical Supercells

Building a PQCA

Example Code

This code describes two tessellations of a 9 by 4 grid using the pqca
package.

import pqca
tes_1 = pqca.tessellation.n_dimensional([9,4],[1,2])
tes_2 = pqca.tessellation.n_dimensional([9,4],[3,1])

Example 2-qubit Unitary
We can then use qiskit (or anything that exports to .qasm) to
build a circuit.

two_qubit_circuit = qiskit.QuantumCircuit(2)
two_qubit_circuit.cx(0,1)
two_qubit_circuit.h(0)
two_qubit_circuit.draw()

Figure 8: Example 2-qubit circuit

Example 3-qubit Unitary
three_qubit_circuit = qiskit.QuantumCircuit(3)
three_qubit_circuit.cx(0,1)
three_qubit_circuit.x(1)
three_qubit_circuit.cx(1,2)
three_qubit_circuit.draw()

Figure 9: Example 3-qubit circuit

Update Frames

An Update Frame is a partition along with the unitary to run on it.

u1 = pqca.UpdateFrame(tes_1,
qiskit_circuit=two_qubit_circuit)

u2 = pqca.UpdateFrame(tes_2,
qiskit_circuit=three_qubit_circuit)

Automaton

A pqca.Automaton is

I An initial state
I An update step determined by a sequence of update frames
I A backend that simulates the circuit

init = [0]*9*4
back = pqca.backend.qiskit()
automaton = pqca.Automaton(init, [u1, u2], back)

The Update Circuit

Figure 10: The tessellated circuit

Circuit Complexity

This allows us to build large circuits from tessellations of small
circuits.

Measurement

In order to feed the results of the PQCA back into CAMUS we need
to measure the states of the qubits after the update circuit.

Some results

Figure 11: The initial state

Some results

Figure 12: After the first step

Some results

Figure 13: After the second step

Some results

Figure 14: After the third step

Some results

Figure 15: After the fourth step

Some results

Figure 16: After the fifth step

Putting It Together

Small Scale CAMUS

Figure 17: How we split our input grid for CAMUS

The Main Loop

Our main process loop is as follows

1. Prepare the state
2. Apply the update circuit
3. Measure the state
4. Feed the result into CAMUS
5. Feed the result back into step 1.

IBM Jakarta

Figure 18: (Simplified) example of Quantum CAMUS run on IBM Jakarta

Conclusion

Our Goal

To facilitate musicians using quantum computers to aid
composition

In order to synthesise music with this system, a musician:

I Specifies a collection of small quantum circuits and tessellations
I Makes some stylistic choices about how to implement CAMUS

Artefacts

Software
pqca is a Python package that handles Partitioned Quantum
Cellular Automata

Tutorials
https://iccmr-quantum.github.io/ hosts Jupyter notebooks
to guide musicians through the process

Thank You

Acknowledgements

This work was funded by the QuTune project.

Tutorials are available on the ICCMR website.

All software created for this is available under the MIT licence.

	Classical Cellular Automata
	CAMUS
	Quantum Cellular Automata
	Building a PQCA
	Putting It Together
	Conclusion
	Thank You

